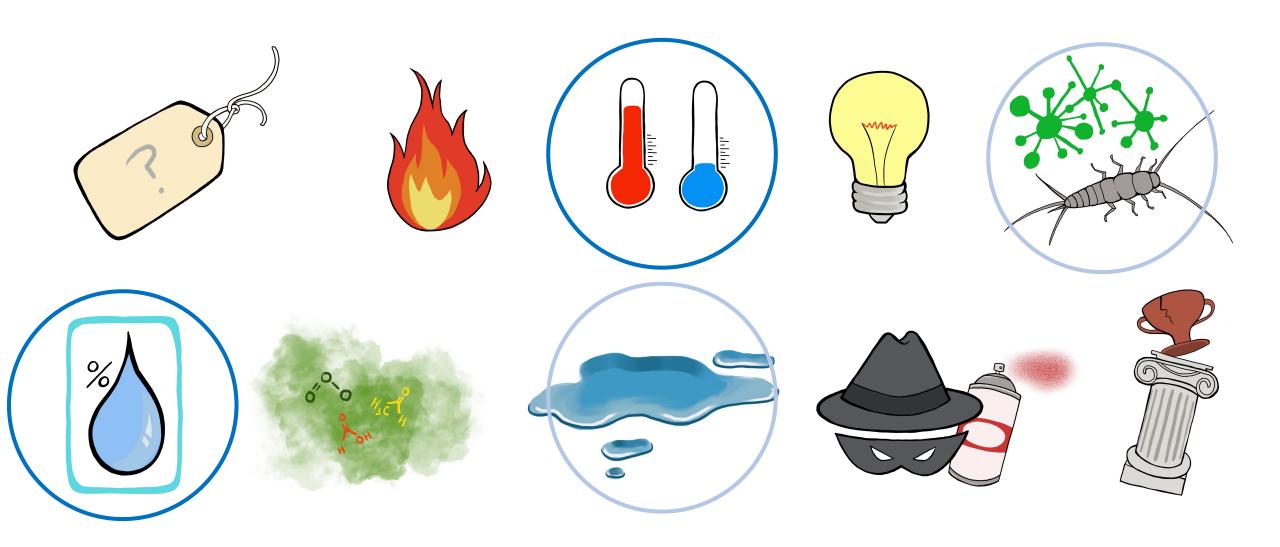
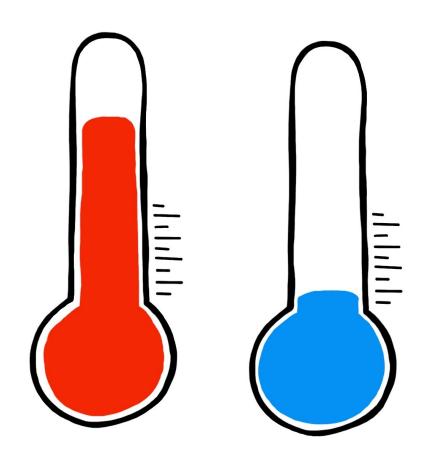
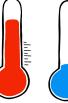
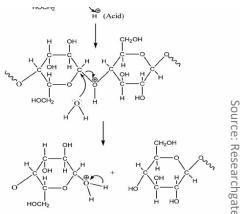

Housing and the Museum Environment




Margalit Schindler (they/them)
mschindler@ccaha.org
Handling and Housing Workshop
November 2021


Multi-Layered Approach to Storage

10 Agents of Deterioration



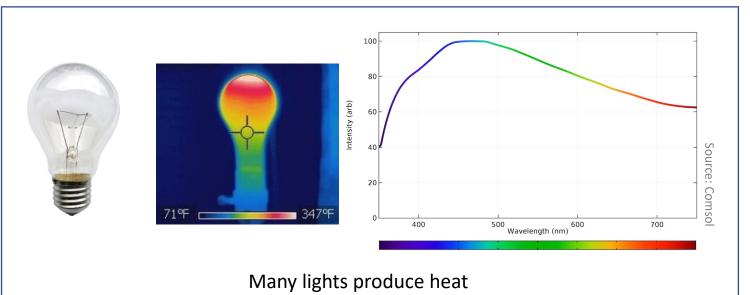
Adhesive melting in high temperatures

Acid hydrolysis reactions encouraged by heat

Frozen water pipes can burst

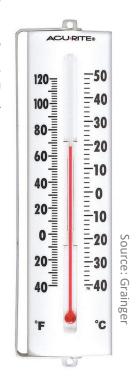
Acidic paper and degrading cellulose acetate film negative

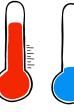
Incorrect temperature can encourage mold growth



Acrylic paintings can experience mechanical damage when frozen

Shipping containers can include insulation for travel




Building insulation

SDS usually contain melting temperatures

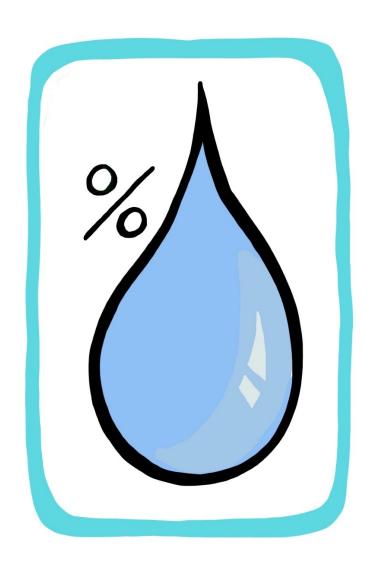
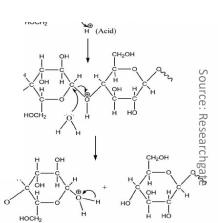
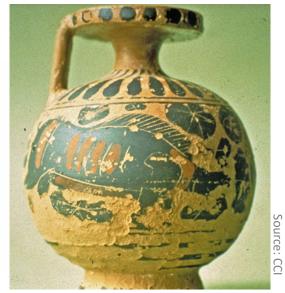

AVOID → **BLOCK** → **DETECT** → **RESPOND** → **RECOVER**

Table C.1 – Risk of damage or deterioration due to heat

		Temperature ^o C																		
		-20	-5	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	Over 30
Chemical stability	Low sensitivity items																			
	Moderate sensitivity items																			
	High sensitivity items (chemically unstable materials)																			
ergy erat	Allowing the set point for temperature to drift in this range will reduce energy demand in winter-spring																			
	Allowing the set point for temperature to drift in this range will reduce energy demand in summer-autumn																			
	Range of human comfort for visitors												•	,	_	\rightarrow				
	Minimum legal requirement if people work in the same environment											•	(
Refere	Risk of frost damage to pipes, etc. below 5 °C						←	_												


ource: PAS 198:2012 Specification for managing ovironmental conditions for cultural collections



Silverfish enjoy high humidity

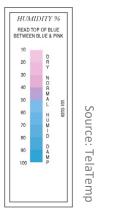
Acid hydrolysis

Salt damage on ceramic

Dry environments can cause organic objects to crack

Metal corrosion

Paint loss due to fluctuating humidity



High humidity can encourage mold to grow

HVAC system

RH indicator paper

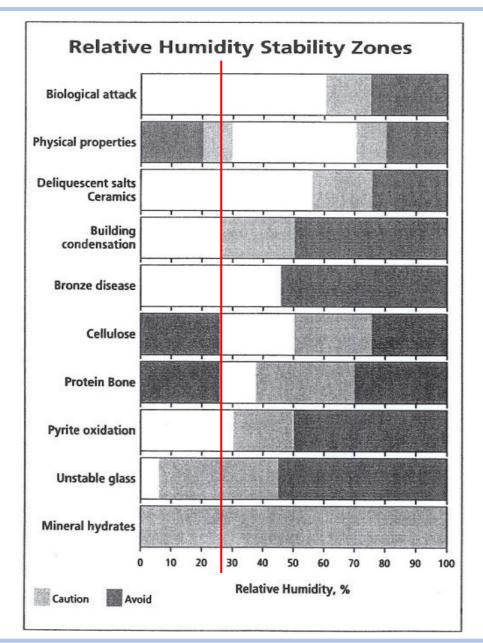
ELSEC spot reader

RH of (OBIX) Objects Lab et al. 2019-10-13 - 2019-0-13

Time-series graph showing RH

Showcase microenvironment

AVOID → **BLOCK** → **DETECT** → **RESPOND** → **RECOVER**


Table D.1 – Risk of damage or deterioration due to RH

		T					Rela	ative humi	dity				
		0	10	20	3	0	40	50	60	70	80	9υ	100
	High sensitivity to hydrolysis												
Chemical stability	Medium sensitivity to hydrolysis												
	Low sensitivity to hydrolysis												
Mechanical stability	Safe range for most non composite, non constrained hygroscopic items to avoid mechanical damage	fl	anic materia exible, incre amage main	asing the	risk of								
Risk of mould	Risk of mould germination at 20 °C												
Trisk of filodia	Risk of mould growth												
Energy	Reduced energy demand for humidification in winter-spring												
considerations	Reduced energy demand for dehumidification in summer-autumn												

%

environmental conditions for cultural collections

Source: Mecklenburg, Tumosa, and Erhardt. New Environmental Guidelines at the Smithsonian Institution. *Papyrus* 5(3) Winter 2004-05. 16-17.

Water

Types of Damage

Biological

Mold - high RH

Pests - high RH

Physical/Mechanical

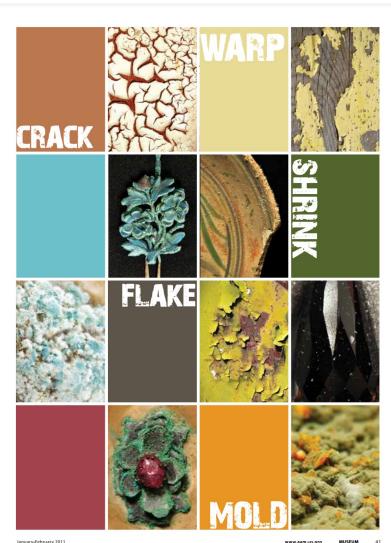
Shrinking/Expanding - fluctuations

Embrittlement – low RH and Temp

Softening – high temp and RH

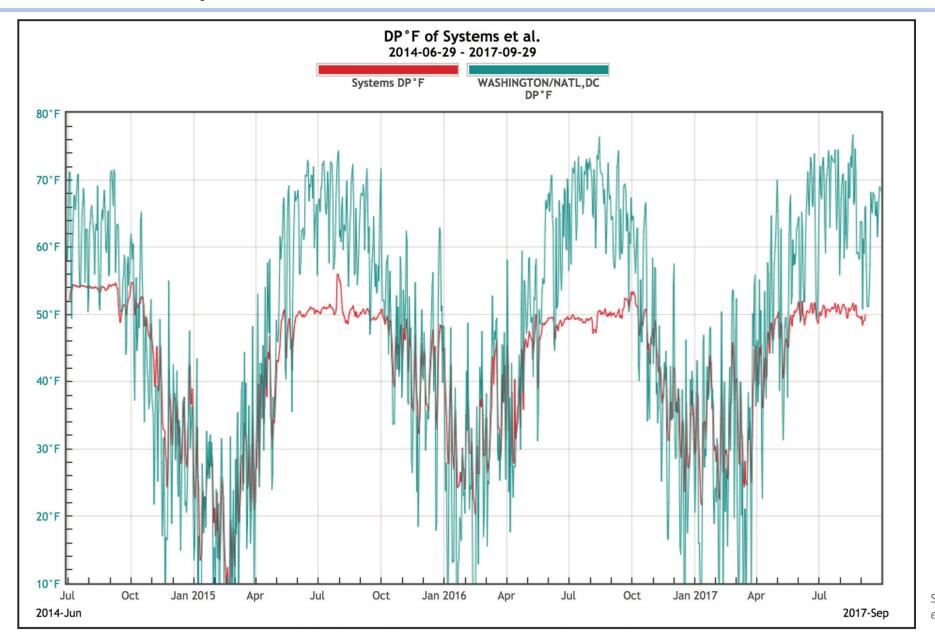
Chemical – hydrolysis and oxidation

Corrosion – high RH


Increased reaction speed – high Temp

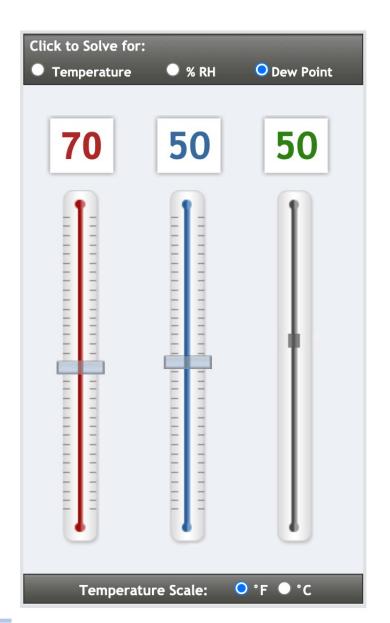
Types of Damage

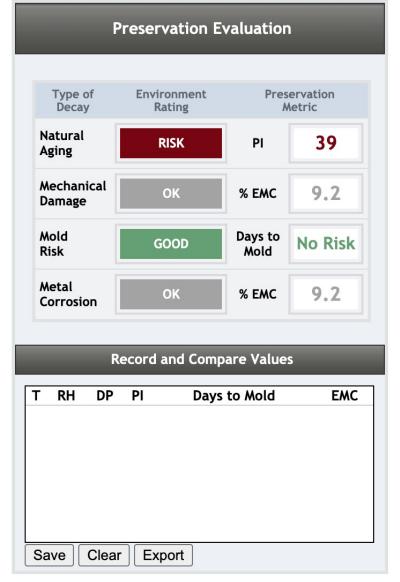
Source: Crack, Warp, Shrink, Flake: A New Look at Conservation Standards. Pamela Hatchfield, 2011.


	Too low	Too high	Too low	Too high
Photographs	Drying, breaks, deformation, delamination	Condensation, deformation, stickiness, silver mirroring, mold growth	10010w	Dye fading, Vinegar syndrome
Paper	Brittleness	Deformation, mold growth, yellowing		Discoloration, Stiffness, increased degradation
Textiles, basketry	Brittleness, delamination, deformation	Dye fading, mold		Dye fading, weakening
Paintings	Oil films can crack, flaking	Cracking, delamination, distortion, mold growth		Increased degradation of substrate
Wood	Delamination, deformation, cracks, drying	Distortion, mold growth		
Metal		Corrosion, tarnishing		
Stone, ceramics, glass	Drying, Cracking, flaking, efflorescence	Crizzling, weeping, cracking, crystallization, powdering, delamination		Crystallization, powdering, delamination
Digital Content (CD, tapes, hard drives)	Flaking, delamination, brittleness, curling	Softness, stickiness, mold growth		Increased degradation
Film, negatives	Flaking, delamination, brittleness, curling	Softness, stickiness, mold growth, decay of color, Vinegar syndrome		Increased degradation
Plastic, rubber, modern materials	Fractures, brittleness, delamination	Swelling, delamination electrostatic charge	Deformation, brittleness	Brittleness, cracks, deformation, fading, yellowing, browning
Parchment, vellum, ivory	Stiffness	Cockling, distortion, separation of paint/ink, mold growth	Distortion	Softening
Leather	Drying, breaks	Shrinkage, brittleness, mold growth		Inflexibility, hardening
Dyes, pigments, inks		Corrosion (iron gall ink)		Corrosion (iron gall ink), dye migration (digital prints)

Source: Modified from A Practical Guide for Sustainable Climate Control. 2015

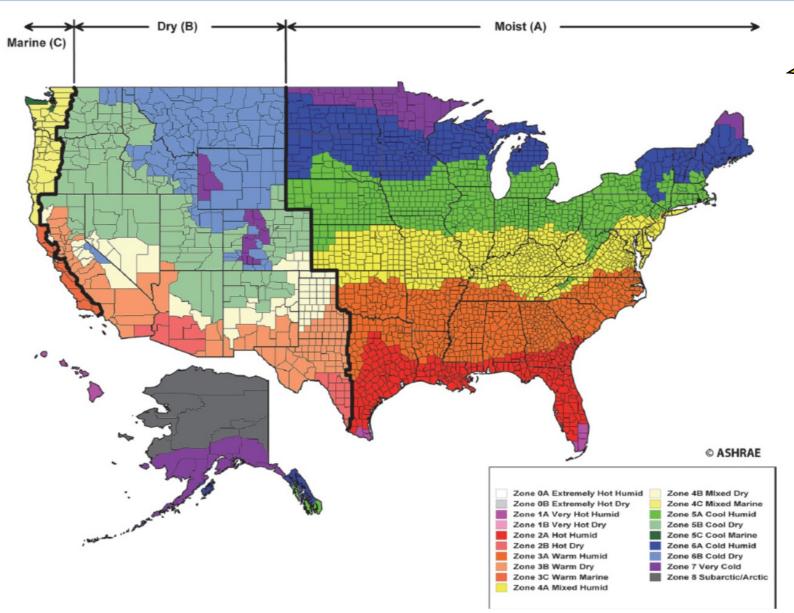
Environmental Management and Data


Collect Store Process Analyze Present


Time Series Graph

Source: Modified from eClimate Notebook

Dew Point Calculator



www.dpcalc.com

Source: Image Permanence Institute.

ASHRAE Climate Classification

Source: American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 2015 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications

What's the best environment?

IT DEPENDS

- Examine your space from "continent to closet"
- Understand specific risks of your collection
- Work with facilities, exhibitions and other departments to figure out what is possible and what is ideal for the institution
- Respect the capacity of the building
- Large amounts of cooling/dehumidifying may not be sustainable
- Remember that mechanized systems will fail. If you rely too heavily on them disaster can strike.
- What can you do with microclimates for particularly sensitive objects?
- Think about whether the objects in the collection have been 'proofed' (Stefan Michalski)

Resources

- American Society of Heating, Refrigerating and Air-Conditioning Engineers, and American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2015. 2015 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications, Inch Pound Edition (version I-P Edition.)
- Baki Ulas et al. 2015. A Practical Guide for Sustainable Climate Control and Lighting in Museums and Galleries. International Conservation Services and Steensen Varming: Sydney, Australia.
- British Standards Institute. 2012. *PAS198:2012 Specification for managing environmental conditions for cultural collections.* BSI Standards Limited: London.
- Image Permanence Institute. 2012. IPI's Guide to: Sustainable Preservation Practices for managing storage environments. IPI: New York. p12. IPI's Methodology for: Implementing Sustainable Energy-Saving Strategies. Image Permanence Institute, Rochester Institute of Technology, 2017.
- Kerschner, Richard L. 1992. "A Practical Approach to Environmental Requirements for Collections in Historic Buildings." *Journal of the American Institute for Conservation* 31 (1): 65–76.
- ———. 2007. Providing Safe and Practical Environments for Cultural Property in Historic Buildings...and Beyond. From Gray Areas to Green Areas: Developing Sustainable Practices in Preservation Environments, Symposium Proceedings. 2008. The Kilgarlin Center for Preservation of the Cultural Record, School of Information, The University of Texas at Austin.
- Michalski, Stefan. 1993, 'Relative Humidity: A discussion of correct/incorrect values', in J Bridgland (ed.), *Preprints of the 10th Triennial Meeting of the ICOM Conservation Committee*, Washington, D.C., International Council of Museums, 624–629.
- ———. 2002. "Double the Life for Each Five-Degree Drop, More than Double the Life for Each Halving of Relative Humidity." ICOM Committee for Conservation, 13th Triennial Meeting Rio de Janeiro Preprints.
- ———. 2007. The Ideal Climate, Risk Management, the ASHRAE Chapter, Proofed Fluctuations, and Toward a Full Risk Analysis Model.

 Contribution to the Experts' Roundtable on Sustainable Climate Management Strategies. April, 2007. Tenerife, Spain